Preview

FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology

Advanced search

Comparative chemomicrobiomic analysis of bacteriocins

https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.192

Abstract

Objective: comprehensive analysis of the spectrum of antibacterial action of bactеriocins.
Material and methods. Chemomicrobiome analysis of bacteriocins A/B, C, S, 28b, RS-2020 was performed to assess the minimum inhibitory concentration (MIC) values for 152 strains of pathogenic bacteria and the area under the growth curve (AUC) values for a representative sample of normobiota (38 human commensal bacteria).
Results. Compared to other molecules, bacteriocin C was characterized by lower MIC constants for a wide range of pathogenic bacterial strains. Thus, it more effectively inhibited strains of pathogens of bacterial pneumonia (H. influenzae, S. mutans, S. pneumoniae, S. pyogenes), nosocomial infections (K. pneumoniae, P. aeruginosa, S. aureus, S. epidermidis, S. pneumoniae), skin diseases (M. audouinii, T. mentagrophytes, etc.), urinary tract infections (E. cloacae, P. mirabilis and P. vulgaris), Fusobacterium necrophorum and Candida fungi. At the same time, bacteriocin C to a lesser extent than the reference molecules inhibited the growth of the normophysiological microbiota of the Bacteroides, Enterococcus genera, non-pathogenic Escherichia, yeast S. cerevisiae and others. By stimulating butyrate (butyric anion) producing microorganisms, bacteriocin C can exhibit prebiotic properties.
Conclusion. The main structural features of the bacteriocin C molecule associated with the antibacterial effect on pathogenic microbiota were identified and described.

About the Authors

I. Yu. Torshin
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Ivan Yu. Torshin – PhD (Phys. Math.), PhD (Chem.), Senior Researcher

WoS ResearcherID: C-7683-2018; Scopus Author ID: 7003300274

44 corp. 2 Vavilov Str., Moscow 119333



O. A. Gromova
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Russian Federation

Olga A. Gromova – Dr. Med. Sc., Professor, Leading Researcher

WoS ResearcherID: J-4946-2017; Scopus Author ID: 7003589812

44 corp. 2 Vavilov Str., Moscow 119333



References

1. Marx J., Hockberger R., Walls R. Rosen's emergency medicine: concepts and clinical practice. 7th ed. Chapter 30. Philadelphia, Pennsylvania: Mosby; 2010.

2. Bisno A.L. Acute pharyngitis. N Engl J Med. 2001; 344 (3): 205–11. https://doi.org/10.1056/NEJM200101183440308.

3. Baltimore R.S. Re-evaluation of antibiotic treatment of streptococcal pharyngitis. Curr Opin Pediatr. 2010; 22 (1): 77–82. https://doi.org/10.1097/MOP.0b013e32833502e7.

4. Wang F., Qin L., Pace C.J., et al. Solubilized gramicidin A as potential systemic antibiotics. Chembiochem. 2012; 13 (1): 51–5. https://doi.org/10.1002/cbic.201100671.

5. Palm J., Fuchs K., Stammer H., et al. Efficacy and safety of a triple active sore throat lozenge in the treatment of patients with acute pharyngitis: Results of a multi-centre, randomised, placebo-controlled, double-blind, parallel-group trial (DoriPha). Int J Clin Pract. 2018; 72 (12): e13272. https://doi.org/10.1111/ijcp.13272.

6. Lum K., Ingólfsson H.I., Koeppe R.E. II, Andersen O.S. Exchange of gramicidin between lipid bilayers: implications for the mechanism of channel formation. Biophys J. 2017; 113 (8): 1757–67. https://doi.org/10.1016/j.bpj.2017.08.049.

7. Register of Medicines of Russia. Gramicidinum S. Available at: https://www.rlsnet.ru/active-substance/gramicidin-s-1294 (in Russ.) (accessed 30.03.2023).

8. Schripsema J., de Rudder K.E., van Vliet T.B., et al. Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol. 1996;178 (2):366–71. https://doi.org/10.1128/jb.178.2.366-371.1996.

9. Enfedaque J., Ferrer S., Guasch J.F., et al. Bacteriocin 28b from Serratia marcescens N28b: identification of Escherichia coli surface components involved in bacteriocin binding and translocation. Can J Microbiol. 1996; 42 (1): 19–26. https://doi.org/10.1139/m96-004.

10. Torshin I.Yu., Gromova O.A., Zakcharova I.N., Maximov V.A. Hemomikrobiomny lactitol analysis. Experimental and Clinical Gastroenterology. 2019; 164 (4): 111–21 (in Russ.). https://doi.org/10.31146/1682-8658-ecg-164-4-111-121.

11. Torshin I.Yu., Galustyan A.N., Ivanova M.I., et al. Chemomicrobiome analysis of synergism of D-mannose and D-fructose in comparison with other metabiotics. Effective Pharmacotherapy. 2020; 16 (20): 22–31 (in Russ.).

12. Gromova O.A., Torshin I.Yu., Naumov A.V., Maksimov V.A. Chemomicrobiomic analysis of glucosamine sulfate, prebiotics and non-steroidal anti-inflammatory drugs. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020; 13 (3): 270–82 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.049.

13. Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognit Image Anal. 2016; 26 (3): 483–96. https://doi.org/10.1134/S1054661816030202.

14. Torshin I.Yu, Rudakov K.V. On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognit Image Anal. 2015; 25 (4): 577–87. https://doi.org/10.1134/S1054661815040252.

15. Torshin I.Yu, Rudakov K.V. On the procedures of generation of numerical features over the splits of a set of objects and the problem of prediction of numeric target variables. Pattern Recognit Image Anal. 2019; 29 (4): 654–67. https://doi.org/10.1134/S1054661819040175 .

16. The Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012; 486 (7402): 215–21. https://doi.org/10.1038/nature11209.

17. The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014; 16 (3): 276–89. https://doi.org/10.1016/j.chom.2014.08.014.

18. Kim S., Chen J., Cheng T., et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019; 47 (D1): D1102–9. https://doi.org/10.1093/nar/gky1033.

19. Maier L., Pruteanu M., Kuhn M., et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018; 555 (7698): 623–8. https://doi.org/10.1038/nature25979.

20. Saavedra J.M. Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol. 2005; 25 (3–4): 485–512. https://doi.org/10.1007/s10571-005-4011-5.


Review

For citations:


Torshin I.Yu., Gromova O.A. Comparative chemomicrobiomic analysis of bacteriocins. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(4):643-656. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.192

Views: 548


ISSN 2070-4909 (Print)
ISSN 2070-4933 (Online)