Antitumor effects of vitamin B12 in vitro, in vivo, in silico
https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.231
Abstract
Objective: to investigate the antitumor effects of various forms of vitamin B12 in combination with various synergistic vitamins and evaluate the prospects for clinical applications.
Material and methods. Cell lines BT-474 (breast ductal carcinoma) and A549 (lung carcinoma) were used as an in vitro cell model, and transplantable epidermoid Lewis lung carcinoma (LLC) was used as an in vivo animal tumor model. Animal studies of LLC were carried out on 25 male F1 hybrid mice (age 2.5–3 months, body weight 23–26 g). In silico research was conducted as a systematic computer analysis of 9,326 scientific sources.
Results. In vitro studies on cultures of two human tumor cell lines (BT-474 and A549) confirmed the cytotoxic effect of vitamin B12 (aquacobalamin). It has been shown that vitamin B12 has weak cytotoxic properties in the concentration range of 3.125–200 μg/L (IC50>200 nM), and its hydrophobic derivative (heptamethyl cyanoquacobyric acid ester) significantly reduces the survival of tumor lines. BT-474 and A549 cells at high concentrations (100–200 µg/l, IC50~100 nM). Experimental animals with an in vivo LLС model easily tolerated a drug based on vitamin B12. Exposure to the drug up to the 21st day of LLС development was accompanied by an increasing tendency to inhibit tumor growth by 10–20% (р=0.059). The results of a systematic in silico review of the literature show that clinical data confirmed the significant antitumor effect of vitamin B12.
Conclusion. The cellular model indicated the antitumor properties of vitamin B12 and its hydrophobic derivative. With subchronic intragastric administration of B12 to tumor-bearing animals, a steady tendency to inhibit the LLС growth was observed. Analysis of clinical data confirmed the feasibility of the antitumor use of vitamin B12 individually and in combination with synergistic vitamins.
Keywords
About the Authors
O. A. GromovaRussian Federation
Olga A. Gromova – Dr. Med. Sc., Professor, Leading Researcher
WoS ResearcherID: J-4946-2017; Scopus Author ID: 7003589812
44 corp. 2 Vavilov Str., Moscow 119333
D. E. Frolova
Russian Federation
Darya E. Frolova – Assistant Professor, Chair of Oncology, Obstetrics and Gynecology
8 Sheremetevskiy Ave., Ivanovo 153012
I. Yu. Torshin
Russian Federation
Ivan Yu. Torshin – PhD (Phys. Math.), PhD (Chem.), Senior Researcher
WoS ResearcherID: C-7683-2018; Scopus Author ID: 7003300274
44 corp. 2 Vavilov Str., Moscow 119333
M. V. Filimonova
Russian Federation
Marina V. Filimonova – Dr. Med. Sc., Dr. Biol. Sc., Head of Laboratory of Radiation Pharmacology
Scopus Author ID: 36894092800
10 Marshal Zhukov Str., Obninsk 249031
M. A. Sorokina
Russian Federation
Maria A. Sorokina – Analyst, Neurocampus-2030
Scopus Author ID: 57226747037
1 Ostrovityanov Str., Moscow 117997
I. A. Reyer
Russian Federation
Ivan A. Reyer – PhD (Tech.), Researcher
Scopus Author ID: 14042533700
44 corp. 2 Vavilov Str., Moscow 119333
O. A. Limanova
Russian Federation
Olga A. Limanova – MD, PhD, Associate Profesor, Chair of Pharmacology
8 Sheremetevskiy Ave., Ivanovo 153012
L. E. Fedotova
Russian Federation
Lyubov E. Fedotova – MD, PhD, Associate Profesor, Chair of Pharmacology
8 Sheremetevskiy Ave., Ivanovo 153012
L. A. Maiorova
Russian Federation
Larissa A. Maiorova – Dr. Phys. Math. Sc., Professor, Leading Researcher
WoS ResearcherID: B-6288-2016; Scopus Author ID: 58079684100
44 corp. 2 Vavilov Str., Moscow 119333; Sheremetevsky Ave., 7, Ivanovo 153012
References
1. Volkov I. The master key effect of vitamin B12 in treatment of malignancy – a potential therapy? Med Hypotheses. 2008; 70 (2): 324–8. https://doi.org/10.1016/j.mehy.2007.05.029.
2. Hernandez B.Y., McDuffie K., Wilkens L.R., et al. Diet and premalignant lesions of the cervix: evidence of a protective role for folate, riboflavin, thiamin, and vitamin B12. Cancer Causes Control. 2003; 14 (9): 859–70. https://doi.org/10.1023/b:caco.0000003841.54413.98.
3. Wu K., Helzlsouer K.J., Comstock G.W., et al. A prospective study on folate, B12, and pyridoxal 5'-phosphate (B6) and breast cancer. Cancer Epidemiol Biomarkers Prev. 1999; 8 (3): 209–17.
4. Nakagawa K., Kudoh S., Matsui K., et al. A phase I study of pemetrexed (LY231514) supplemented with folate and vitamin B12 in Japanese patients with solid tumours. Br J Cancer. 2006; 95 (6): 677–82. https://doi.org/10.1038/sj.bjc.6603321.
5. Gromov O.A., Torshin I.Yu., Gusev E.I. Synergistic neuroprotective effects of thiamine, pyridoxine and cyanocobalamin on the level of human proteome. Pharmacokinetics and Pharmacodynamics. 2017; 1: 40–51 (in Russ.).
6. Kawano K., Hattori Y., Iwakura H., et al. Adrenal tumor volume in genetically engineered mouse model of neuroblastoma determined by magnetic resonance imaging. Exp Ther Med. 2012; 4 (1): 61–4. https://doi.org/10.3892/etm.2012.564.
7. Khabriev R.U. (Ed.) Guidelines for the experimental (preclinical) study of new pharmacological substances. 2nd ed. Мoscow: Meditsina; 2005: 832 pp. (in Russ.).
8. Тorshin I.Yu., Chuchalin A.G., Gromova O.A. Oncoprotective effects of chondroprotectors: glucosamine, chondroitin sulfate and undenatured type II collagen. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023; 16 (4): 681–99 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.182.
9. Zhuravlev Yu.I., Rudakov K.V., Torshin I.Yu. Algebraic criteria for local solvability and regularity as a tool to investigate the morphology of amino acid sequences. Trudy MFTI. 2011; 3 (4): 45–54 (in Russ.).
10. Shadrin V.S., Kozhin P.M., Shoshina O.O., et al. Telomerized fibroblasts as a candidate 3D in vitro model of pathological hypertrophic scars. Bulletin of Russian State Medical University. 2020; 5: 82–90 (in Russ.). https://doi.org/10.24075/vrgmu.2020.057.
11. Egnell M., Fassier P., Lécuyer L., et al. B-vitamin intake from diet and supplements and breast cancer risk in middle-aged women: results from the prospective NutriNet-Santé cohort. Nutrients. 2017; 9 (5): 488. https://doi.org/10.3390/nu9050488.
12. Baik H.W., Russell R.M. Vitamin B12 deficiency in the elderly. Annu Rev Nutr. 1999; 19: 357–77. https://doi.org/10.1146/annurev.nutr.19.1.357.
13. Orzechowska-Pawilojc A., Siekierska-Hellmann M., Syrenicz A., Sworczak K. Homocysteine, folate, and cobalamin levels in hyperthyroid women before and after treatment. Endokrynol Pol. 2009; 60 (6): 443–8.
14. Nacci A., Dallan I., Bruschini L., et al. Plasma homocysteine, folate, and vitamin B12 levels in patients with laryngeal cancer. Arch Otolaryngol Head Neck Surg. 2008; 134 (12): 1328–33. https://doi.org/10.1001/archotol.134.12.1328.
15. Choi S.W., Mason J.B. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000; 130 (2): 129–32. https://doi.org/10.1093/jn/130.2.129.
16. Marguerite V., Beri-Dexheimer M., Ortiou S., et al. Cobalamin potentiates vinblastine cytotoxicity through downregulation of MDR-1 gene expression in HepG2 cells. Cell Physiol Biochem. 2007; 20 (6): 967–76. https://doi.org/10.1159/000110457.
17. Wu W., Kang S., Zhang D. Association of vitamin B6, vitamin B12 and methionine with risk of breast cancer: a dose-response meta-analysis. Br J Cancer. 2013; 109 (7): 1926–44. https://doi.org/10.1038/bjc.2013.438.
18. Sun N.H., Huang X.Z., Wang S.B., et al. A dose-response meta-analysis reveals an association between vitamin B12 and colorectal cancer risk. Public Health Nutr. 2016; 19 (8): 1446–56. https://doi.org/10.1017/S136898001500261X.
19. Stoffregen C.C., Odin E.A., Carlsson G.U., et al. Reduced folate and serum vitamin metabolites in patients with rectal carcinoma: an open-label feasibility study of pemetrexed with folic acid and vitamin B12 supplementation. Anticancer Drugs. 2016; 27 (5): 439–46. https://doi.org/10.1097/CAD.0000000000000345.
20. Snijders-Keilholz A., Griffioen G., Davelaar J., et al. Vitamin B12 malabsorption after irradiation for gynaecological tumours. Anticancer Res. 1993; 13 (5C): 1877–81.
21. Torshin I.Yu., Gromova O.A., Maiorova L.A. The рrospects for the use of vitamin В12 derivatives in pharmacology. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya / FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023; 16 (3): 501–11 (in Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.198.
22. Maiorova L.A., Erokhina S.I., Pisani M., et al. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf B Biointerfaces. 2019; 182: 110366. https://doi.org/10.1016/j.colsurfb.2019.110366.
23. Kharitonova N.V., Maiorova L.A., Koifman O.I. Aggregation behavior of unsubstituted magnesium porphyrazine in monolayers at air-water interface and in Langmuir–Schaefer films. J Porphyrins Phthalocyanines. 2018; 22 (6): 509–20. https://doi.org/10.1142/S1088424618500505.
24. Maiorova-Valkova L.A., Koifman O.I., Burmistrov V.A., et al. 2D M-nanoaggregates in Langmuir layers of calamite mesogen. Prot Met Phys Chem Surf. 2015; 51: 85–92. https://doi.org/10.1134/S2070205115010074.
25. Valkova L.A., Glibin A.S., Valli L.,Quantitative analysis of compression isotherms offullerene C60 Langmuir layers. Colloid J. 2008; 70: 6–11. https://doi.org/10.1134/S1061933X0801002X.
26. Maiorova L.A., Kobayashi N., Salnikov D.S., et al. Supermolecular nanoentities of vitamin B12 derivative as a link in the evolution of the parent molecules during self-assembly at the air-water interface. Langmuir. 2023; 39 (9): 3246–54. https://doi.org/10.1021/acs.langmuir.2c02964.
27. Dereven’kov I.A., Maiorova L.A., Koifman O.I., Salnikov D.S. High reactivity of supermolecular nanoentities of a vitamin B 12 derivative in Langmuir–Schaefer films toward gaseous toxins. Langmuir. 2023; 39 (48): 17240–50. https://doi.org/10.1021/acs.langmuir.3c02317.
28. Egorov E.E., Terekhov S.M., Vishniakova K., et al. Telomerization as a method of obtaining immortal human cells preserving normal properties. Ontogenez. 2003; 34 (3): 183–92 (in Russ.).
Review
For citations:
Gromova O.A., Frolova D.E., Torshin I.Yu., Filimonova M.V., Sorokina M.A., Reyer I.A., Limanova O.A., Fedotova L.E., Maiorova L.A. Antitumor effects of vitamin B12 in vitro, in vivo, in silico. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.231

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.